MATRIKS
Hallo,perkenalkan nama saya AHMAD SULTONI disini saya akan membuatkan blog yang judulnya adalah MATRIKS
Oke sebelum masuk ke MATRIKS kita harus tahu dulu apa itu matriks?teman-teman pada bingungkan?oke disini saya akan menjelaskan matrik
Teman-teman mau tu nggak ada berapa jenis-jenis matriks itu?penasaran?oke
Sudah taukan Jenis-jenis matriks?disini saya akan menjelaskan Transpose matrik,mau tau apa itu transpose matriks?oke mari kita baca:
Sudah taukan matriks itu?oke ari kita masuk ke dalam soal dan pembahasan:
Oke sebelum masuk ke MATRIKS kita harus tahu dulu apa itu matriks?teman-teman pada bingungkan?oke disini saya akan menjelaskan matrik
Pengertian Matriks
Matriks adalah kumpulan bilangan yang disusun secara baris atau kolom atau kedua-duanya dan di dalam suatu tanda kurung. Bilangan-bilangan yang membentuk suatu matriks disebut sebagai elemen-elemen matriks. Matriks digunakan untuk menyederhanakan penyampaian data, sehingga mudah untuk diolah.
Oke kita sudah tahu matriks kan,matriks itu memiliki ordo dimana ordonya itu adalah sebagai berikut:
Ordo Matriks
Dijelaskan sebelumnya matriks terdiri dari unsur-unsur yang tersusun secara baris dan kolom. Jika banyak baris suatu matriks adalah m, dan banyak kolom suatu matriks adalah n, maka matriks tersebut memiliki ordo matriks atau ukuran m x n. Perlu diingat bahwa m dan n hanya sebuah notasi, sehingga tidak boleh dilakukan sebuah perhitungan (penjumlahan, perkalian). Pada contoh matriks jumlah penjualan mobil diatas diketahui bahwa:
- Banyak baris, m = 3
- Banyak kolom, n = 3
- Ordo matriks, m x n = 3 x 3
Teman-teman mau tu nggak ada berapa jenis-jenis matriks itu?penasaran?oke
Jenis-jenis Matriks
Matriks dapat dikelompokan ke beberapa jenis berdasarkan pada jumalah baris dan kolom serta pola elemen matriksnya sebagai berikut :
1. Matriks Baris dan Matriks Kolom
Matriks baris adalah suatu matriks yang hanya memiliki satu baris saja. Sedangkan, matriks kolom adalah suatu matriks yang hanya memiliki satu kolom saja. Contoh:
A = (1 4) atau B = (3 7 9) adalah matriks baris
atau adalah matriks kolom
2. Matriks Persegi
Matriks yang memiliki jumlah kolom dan baris yang sama disebut matriks persegi. Matriks persegi memiliki ordo n.
Contoh:
adalah matriks persegi berordo 3, atau
adalah matriks persegi berordo 2.
3. Matriks Segitiga Atas dan Segitiga Bawah
Matriks persegi A yang memiliki elemen matriks untuk atau elemen-elemen matriks dibawah diagonal utama bernilai 0 disebut matriks segitiga atas. Matriks persegi A yang memiliki elemen matiks untuk atau elemen-elemen matriks diatas diagonal utama bernilai 0 disebut matriks segitiga bawah.
Contoh:
adalah matriks segitiga atas,
adalah matriks segitiga bawah.
4. Matriks Diagonal
Matriks persegi A yang memiliki elemen matiks untuk atau elemen-elemen matriks diluar diagonal utama bernilai 0 disebut matriks diagonal.
Contoh:
atau
5. Matriks Skalar
Matriks diagonal yang memiliki elemen-elemen pada diagonal utamanya bernilai sama disebut matriks skalar.
Contoh:
atau
6. Matriks Indentitas
Sudah dijelaskan di atas.
7. Matriks Simetris
Matriks persegi A yang memiliki elemen matiks baris ke-I sama dengan elemen matriks kolom ke-j untuk i = j disebut simetris. Atau, dapat dikatakan elemen sama dengan elemen .
Contoh:
Dapat dilihat bahwa elemen baris ke-1 sama dengan kolom ke-1, baris ke-2 sama dengan kolom ke-2, dan baris ke-3 sama dengan kolom ke-3.
8.Matriks Identitas
Matriks diagonal dengan elemen-elemen diagonal utamanya bernilai 1 disebut matriks identitas. Pada umumnya matriks identitas dinotasikan dengan “I”. Contoh:
atau
Sudah taukan Jenis-jenis matriks?disini saya akan menjelaskan Transpose matrik,mau tau apa itu transpose matriks?oke mari kita baca:
Transpose Matriks
Transpose matriks merupakan perubahan baris menjadi kolom dan sebaliknya. Transpose matriks dari adalah sebuah matriks dengan ukuran (n x m) dan bernotasi AT. Jika matriks A ditanspose, maka baris 1 menjadi kolom 1, baris 2 menjadi kolom 2, dan begitu seterusnya.
Contoh:
ditranspose menjadi .
Sifat dari transpose matriks: .Sudah taukan matriks itu?oke ari kita masuk ke dalam soal dan pembahasan:
Contoh Soal dan Pembahasan
Jika dan Jika , maka agar , berapakah nilai c?
Pembahasan:
Diketahui bahwa
Sehingga didapat 4 persamaan baru dari elemen-elemen matriksnya, yaitu:
- (persamaan ke-1)
- 2 = a (persamaan ke-2)
- b = 2a + 1 (persamaan ke-3)
- (persamaan ke-4)
Dari persamaan tersebut dapat dilakukan substitusi persamaan untuk memperoleh nilai c, yaitu:
a = 2, maka:
b = 2a + 1 = 2(2) + 1 = 5
dan
.
Komentar
Posting Komentar