TRANFORMASI LINIER
TRANSFORMASI LINIER Definisi : F : v ↔ w ; v dan w Ruang Vektor . F disebut Transformasi Linear jika memenuhi 2 Aksioma berikut. ∀ u,v ∈ v dan k skalar 1) F(u+v) = F(u) + F(v) 2) F(ku) = k.F(u) Contoh : 1) Diketahui F : R² ↔ R³, tentukan apakah F(x,y) = (x+y, x-y, 2xy) merupakan Transformasi Linear ? Jawab : Misal u,v ∈ R² u = (x₁,y₁) v = (x₂,y₂) k skalar 1) F(u+v) = F(u) + F(v) Ruas Kiri F(u+v) = F( (x₁,y₁) + (x₂,y₂) ) = F ( x₁+x₂ , y₁+y₂ ) = ( (x₁+x₂) + (y₁+y₂) , (x₁+x₂) - (y₁+y₂) , 2(x₁+x₂).(y₁+y₂) ) = ( (x₁+y₁) + (x₂+y₂) , (x₁-y₁) + (x₂-y₂) , 2x₁y₁ + 2x₂y₂ + 2x₁y₂ + 2x₂y₁ ) = ( x₁+y₁ , x₁-y₁ , 2x₁y₁ ) + ( x₂+y₂ , x₂-y₂ , 2x₂y₂ ) + ( 0 , 0 , 2x₁y₂ + 2x₂y₁ ) ≠ F(u) + F(v) (T...